
Periodic structural defects in Bragg gratings and their
application in multiwavelength devices

Rulei Xiao, Yuechun Shi,* Renjia Guo, Ting Chen, Lijun Hao, and Xiangfei Chen

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

*Corresponding author: shiyc@nju.edu.cn

Received November 9, 2015; revised January 6, 2016; accepted January 12, 2016;
posted January 15, 2016 (Doc. ID 253631); published February 23, 2016

In this paper, we present the finding that periodic structural defects (PSDs) along a Bragg grating can shift the Bragg
wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find that the Bragg
wavelength shift is determined by the defect size and the period of the defects. The Bragg wavelength can be well
tuned by properly designing the PSDs, and this may provide an alternative method to fabricate grating-based mul-
tiwavelength devices, including optical filter arrays and laser arrays. In regards to wavelength precision, the pro-
posed method has an advantage over the traditional methods, where the Bragg wavelengths are changed directly
by changing the grating period. In addition, the proposed method can maintain grating strength when tuning the
wavelength since only the period of defects is changed. This will be a benefit for devices such as arrays. © 2016
Chinese Laser Press

OCIS codes: (050.2770) Gratings; (050.6624) Subwavelength structures; (130.7408) Wavelength filtering
devices; (140.3290) Laser arrays.
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1. INTRODUCTION
Structural defects in photonic crystal (PC) are indispensable
elements for almost all PC-based photonic devices. Structural
defects can localize the optical mode, which makes the
photonic periodic structure functional and versatile. In two-
dimensional (2D) PCs, there are basically two types of
defects: point defects for resonators and line defects for
waveguides. Waveguides and resonators are the building
blocks of modern photonics [1–4]. In addition, many other
components based on structural defects in PCs have been
realized recently, such as optical mirrors, light splitters, opti-
cal filters, and even the logic gates for all-optical switching
[5–8]. In Bragg gratings, structural defects are also widely
applied, such as the narrow bandpass filter based on a π
phase-shift grating, λ∕4-phase-shifted distributed feedback
(DFB) lasers, and multi-phase-shifted DFB lasers [9–11].

Bragg gratings, the typical 1D PC, have been extensively
investigated and are widely employed in many key applica-
tions, such as optical filters, semiconductor lasers, optical
couplers, and dispersion compensation fibers [9–13]. Usually,
the bandgap of PCs is determined by the lattice constant. For
Bragg gratings in particular, the Bragg wavelength is fixed by
the grating period (Λ), corresponding to λ � 2neffΛ, where
neff is the effective refractive index. Then, for grating-based
photonic devices in a dense wavelength division multiplexing
(DWDM) system, fine-tuning of the wavelength in steps of
about 1 nm or less is usually required. Because of the high
refractive index of semiconductors in photonic devices, such
as Si, In, or P, variation of the grating period with a resolution
below the 1 Å range is required, according to the Bragg
condition. This is very far below the pixel resolution of lithog-
raphy systems [14]. Recently, an improved method was devel-
oped to equivalently realize the required grating period by

alternately stitching two gratings with different periods [15].
The two periods differ in pixel size, which is typically several
nanometers [16]. The averaged grating period is between the
two periods. However, the tuning range is limited by the differ-
ence of the periods and the uniformity of the grating strength.
At the middle range of the averaged wavelength, the effective
grating strength is reduced. That is to say, the grating strength
varies with the wavelength, which will lead to nonuniformity
of the whole device.

In this work, we found that the Bragg wavelength shifted
when periodic structural defects (PSDs) were introduced
along the grating. By adjusting the period and the size of the
defects, the wavelength can be well tuned. In this way, to
fabricate photonic devices with slightly different Bragg wave-
lengths, such as multiwavelength laser arrays or grating-based
filter arrays for DWDM systems, we do not have to utilize
many grating period patterns with slightly different sizes for
each wavelength, but can use only two size-fixed patterns, one
for the basic uniform grating and one for the defect part.

2. NUMERICAL CALCULATION AND
THEORY ANALYSIS
A. Numerical Calculation
Based on the transmission matrix method (TMM) [17], the
spectrum of a Bragg grating with PSDs can be numerically
calculated by treating the whole grating as many uniform gra-
tings and defect parts. For a uniform Bragg grating, the trans-
mission spectrum shows a bandgap at the Bragg wavelength,
as shown in Fig. 1. By adding PSDs into the uniform grating,
the spectrum changes. The transmission notch performs a
shift and the depth of the notch decreases slightly. Two minor
notches appear at the two sides of the main one. The param-
eters used in the calculations are listed in Table 1.
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To investigate the relationship between the defect size and
the notch shift, the transmission spectra with different defect
sizes are calculated. The relative defect size (α) is defined as
the ratio of defect size (D) to the grating period (Λ), i.e.,
α � D∕Λ. Figure 2 shows the 2D transmission spectrum with
the relative defect size changing linearly from −0.5 to 0.5. The
period of defects is fixed at 10 μm, and the other parameters
are listed in Table 1. When the relative defect size is not equal
to 0, many minor notches appears with approximately the
same wavelength spacing and, therefore, are denoted as
�1st order, �2nd order, etc. The main notch dominates all
others and is denoted as the 0th order. As the relative defect
size increases, it can be found that the 0th order notch is re-
duced and other minor ones strengthened. In addition, all the
notches shift to the red region when relative defect size is
positive and to the blue region when it is negative.

We also calculate the 2D transmission spectra with differ-
ent periods of defects (Fig. 3). The parameters used here are
the same as that in Table 1. As the period of defects increases,
there are two typical variation trends: one is that the main
notch shifts to the blue region, approaching the Bragg wave-
length of the basic uniform grating, and the other is that the
wavelength spacing between the minor notches decreases.

B. Theory Analysis
To explain this proposed phenomenon, we build a mathematic
model. The refractive index of a uniform grating can be
described as

Δn�z� � Δn0 exp
�
i
2π
Λ

z
�
� c:c:; (1)

where Δn0 is the refractive index modulation, and z denotes
the longitudinal position. For simplicity, the structural defect
is treated as the phase shift of two adjacent uniform gratings.
The phase shift formed by the defect can be expressed
as φ � −2πD∕Λ. As a consequence, the refractive index of
a grating with PSDs can be modeled as Eq. (2), where the
ϕ�z� stands for the grating phase and can be expressed as
Eq. (3), where k equals 0; 1; 2;…, and P is the period of the
defects:

Δn�z� � Δn0 exp
�
i
�
2π
Λ

z� ϕ�z�
��

� c:c:: (2)

Fig. 1. (a) Schematic and (b) transmission spectra of the uniform
Bragg grating with PSDs and without PSDs.

Table 1. Parameters in TMM Calculation

Parameter (Symbol) Value

Waveguide width (w) 1 μm
Waveguide height (h) 0.4 μm
Grating depth (d) 10 nm
Total length (L) 300 μm
Grating period (Λ) 238 nm
Filling factor (r) 0.5
Waveguide refractive index (n2) 3.4
Cladding refractive index (n1) 3.1
Defect size (D) 59.5 nm
Period of defects (P) 4.5 μm

Fig. 2. 2D transmission spectra when the relative defect size is
changed from −0.5 to 0.5.

Fig. 3. 2D transmission spectra when the period of defects is
changed from 1.0 to 10 μm.
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ϕ�z� � kφ for kP < z < �k� 1�P: (3)

ϕ�z� shows a stair-step-like shape and, as shown in Eq. (4), is
equivalent to a superposition of a slope function (before the
plus sign) and a periodic sawtooth-like function (after the plus
sign). Thus the refractive index of the grating with PSDs can
be expanded to a Fourier series in Eq. (5), and we can derive
the Fourier series coefficient in Eq. (6):

ϕ�z� � φ

P
z�

�
kφ −

φ

P
z
�
; for kP < z < �k� 1�P; (4)

Δn�z� � Δn0

X
m

Fm exp
�
i
�
2π
Λ

� φ

P
� 2πm

P

�
z
�
� c:c:; (5)

Fm � i�exp�−iφ� − 1�
φ� 2πm

: (6)

From Eq. (5), a grating with PSDs is equivalent to a super-
position of many uniform subgratings with different grating
periods, which are denoted as the 0th, �1st, �2nd, etc.,
orders. The grating period of the mth order subgrating is
derived by

Λm � 1
1
Λ �

�
m� φ

2π

	
1
P

: (7)

In particular, the grating period of the 0th-order subgrating
is given by

Λ0 �
Λ

1 − D
P

; (8)

which leads to the Bragg wavelength shift. Keeping the param-
eters used in the calculation of Fig. 3, the wavelength of the
0th-order subgrating is plotted in Fig. 4(a), which is consistent
with that in Fig. 3. The grating strength of subgratings is
proportional to the absolute value of the coefficient of the
Fourier series (jFmj), which stands for the refractive index
modulation ratio of the subgrating to the uniform grating
and is thus called relative grating strength (RGS). The
RGS of each subgrating versus the relative defect size α is
reduced in

jFmj �




 sin�απ�
π�m� α�





; (9)

and is plotted in Fig. 4(b). As the relative defect size increase
from 0 to 0.5, the RGS decreases from 1 to 0.61, and that of the
−1st order increases from 0 to 0.61. The RGSs of the other
orders increase with the defect size, which are only below
0.2 and can be neglected. In particular, when the relative
defect size α equals 0.5 (the defect size D is equal to the
half-grating pitch), the strength of the 0th order is equal to
the −1st-order sub-grating.

Here, we give a physical explanation for the shift of the
Bragg wavelength by introducing PSDs, treating the proposed
structure as cascade-distributed reflection mirrors. The thick-
ness of each mirror is the distance between two defects (P).
Supposing that the reflectance and the reflection phase of
each mirror are r�λ� and ϕ�λ�, respectively, light reflected
by the first mirror can be indicated by jr�λ�j exp�ϕ�λ��. Light

reflected by the second mirror can be indicated by
jr�λ�j exp�ϕ�λ� � φ� ψ�P; λ��, where ψ�P; λ� indicates the
phase change induced by the first mirror and can be given
by ψ�P; λ� � �λ − 2nΛ�πP∕�nΛ2� � ΔλπP∕�nΛ2�, where Δλ �
λ − 2nΛ is the shift of the Bragg wavelength. Consequently,
the light reflected by the lth mirror can be indicated by
jr�λ�j expfϕ�λ� � l�φ� ψ�P; λ��g. Therefore, by a summation
of the whole light reflected by each mirror, one can get the
total reflectance (rtot�λ�) and, hence, the total reflectivity
(R�λ�), which are given, respectively, by

rtot�λ� �
XN
l�0

jr�λ�j expfϕ�λ� � l�φ� ψ�P; λ��g; (10)

R�λ� � jrtot�λ�j2 � jr�λ�j2 sin
2�Nγ∕2�

sin2�γ∕2� ; for γ � φ� ΔλπP
nΛ2 :

(11)

From Eq. (11), one can find that, when φ � 0 and Δλ � 0,
the reflection of the proposed grating is the same as the uni-
form one. Moreover, the condition for the main maximum
peak is fixed at γ � 0, and the shift of the Bragg wavelength
can consequently be derived as shown in Eq. (12), which is
consistent with Eq. (8):

Δλ � 2nΛD
P

: (12)

Fig. 4. (a) Bragg wavelengths of 0 and �1-order subgratings and
(b) the RGS of each order subgrating versus the relative defect size.
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3. APPLICATION TO GRATING-BASED
DEVICES WITH WELL-TUNED
WAVELENGTHS
A. Lower Fabrication Requirements
When fabricating photonic devices such as multiwavelength
Bragg grating arrays [18] and multiwavelength DFB laser
arrays [19,20], the common strategy is to adjust the grating
pitch to each channel with the help of electron beam lithog-
raphy (EBL). Taking an eight-channel π-phase-shift Bragg
grating filter array as an example, half-pitch patterns with
eight sizes are required, as illustrated in Fig. 5, instructed
by Λ � λ∕�2neff�. However, this will lead to very high preci-
sion fabrication when the wavelength spacing is small. For
example, when the wavelength spacing is about 0.8 nm, the
corresponding half-pitch difference is under 1 Å (about
0.06 nm, supposing that neff is 3.2). This is a challenge for most
EBL machines [21]. However, the fabrication is much easier if
the wavelength of the grating is tuned by PSDs where only two
factors of patterns are required, one for the basic grating
and one for the defect part, according to Eq. (8) and Fig. 3.
The transmission spectra of an eight-channel π-phase-shifted
Bragg grating array are calculated in Fig. 6(a). The periods of
defects and designed wavelengths are shown in Table 2. As
shown in Table 2, one can fabricate a Bragg grating array with
0.8 nm spacing by the proposed method. Thereby, a grating
period with 0.13 nm spacing could be equivalently realized.

B. Grating Fabrication Error Analysis
In actual fabrication, machining error is unavoidable. In EBL,
a focused electron beam is used to write the pattern on the
photoresist and then transfer the pattern to the wafer by an
etching process. Because of the limited writing field, stitching
error is inevitable, but it is not considered here. For the
grating structure without PSDs, the EBL machine is hard to
precisely fabricate the gratings with ultrasmall grating pitch
difference when the wavelength spacing is below 0.8 nm
[21,22]. As mentioned in [14], the error of wavelength spacing
is up to nearly 3 nm.

For the grating structure with PSDs, two kinds of error
may have an effect on the wavelength: the defect-size error
(DSE) and the defect-period error (DPE). The DSE comes
mainly from the pattern transfer process, where a small varia-
tion in size is introduced. Then, the defect size is modified to
D� ΔD�ΔD ≪ D�, whereΔD is exactly the DSE. As the defect
size D is much smaller than P, typically D ≈ 60 nm and

P ≈ 6 μm, Eq. (8) can be Taylor expanded and approximately
given by

Λ0 � Λ
�
1� D

P
�

�
D
P

�
2
� o

��
D
P

�
2
��

≈ Λ
�
1� D

P
�

�
D
P

�
2
�
:

(13)

Then, as implied in Fig. 2, the factor Δλ∕ΔD is typically
about 0.25. In this condition, the influence of the DSE on
the eight-wavelength grating array is calculated and illustrated
in Fig. 6(b). Each wavelength shifts to the red region as the
defect size increases, and, at the same time, the spacing of
two adjacent channels increases slightly. For actual photonic
devices, the wavelength spacing and uniformity are more

Fig. 6. (a) Transmission spectra of the PSD-based eight-wavelength
π-phase-shifted Bragg grating array whose parameters are given in
Table 2, and (b) the influence of the DSE.

Fig. 5. Comparison of the actual fabrication patterns utilized in an
eight-wavelength grating array without PSDs and with PSDs.

Table 2. Periods of Defects for Eight-Wavelength

π-Phase-Shifted Bragg Grating Array

Period of
Defects (μm)

Bragg
Wavelength (nm)

Equivalent Grating
Period (nm)

7.740 1535.0 239.84
7.252 1535.8 239.97
6.823 1536.6 240.09
6.442 1537.4 240.22
6.102 1538.2 240.34
5.796 1539.0 240.47
5.519 1539.8 240.59
5.268 1540.6 240.72
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important than the absolute wavelength, because the absolute
wavelength of a monolithic grating array can be wholly tuned
by heating or cooling, while the spacing and the uniformity
have to be adjusted individually after fabrication is complete.
Therefore, we utilize spacing change (ΔSP) to characterize
the DSE, given by

ΔSP � SPerror − SP0 ≈ ΔD
ΔdP
P2 ; (14)

where dP is the defect period difference of adjacent channels.
Then we can acquire the error factor εDSE � ΔSP∕ΔD, which
is typically 0.003, that is to say, 1 nm DSE will lead to wave-
length spacing error of only 0.003 nm.

The DPE denotes the fabrication error of the period of de-
fects, ΔP. In actual fabrication, the existence of DPE makes
each period slightly different from the intended length, that is
to say, the ΔP is negative or positive near zero. Here we con-
sider the worst situation that all ΔP are the same sign and the
same value. Therefore, the wavelength error can be derived
and denoted by the error factor (εDPE � Δλ∕ΔP) in

Δλ ≈ 2neffΛ
ΔP
P2 : (15)

Typically, the error factor is about 0.0025, which means a
20 nm DPE will bring about a 0.05 nm error of the wavelength
in the worst situation. Therefore, the wavelength can be well
controlled in the presence of common fabrication error.

C. Comparison with the Grating-Alternated Method
A practical method used in [15] is to stitch two gratings with
different periods in a sample unit. The average grating period
is tuned by a proper choice of relative contributions of the two
constituent gratings. The schematic is shown in the inset of
Fig. 7, where x is value of the occupation ratio of grating 1,
and (1 − x) is that of grating 2. Thus, the wavelength can
be tuned in the range between the Bragg wavelengths of
the two gratings. The expression of the averaged grating
period is given by

1
Λavr

� x
Λ1

� 1 − x
Λ2

; (16)

where Λavr is the averaged grating period. Λ1 and Λ2 are the
two basic grating periods with a difference of pixel size to re-
duce fabrication difficulty. However, a critical problem is that
the RGS of the averaged grating changes with the occupation
ratio, as evidenced by

RGS �




 sin�2πx�1 − x�ΩP�

2πx�1 − x�ΩP





; (17)

where Ω � 1∕Λ1 − 1∕Λ2. Therefore, based on this structure,
devices with different wavelengths have different grating
strengths. For a grating-based filter array, this may cause dif-
ferent bandwidths, and for a DFB laser array, it may lead to
inequality of lasing characteristics. Nevertheless, for devices
based on the structure with PSDs, uniformity can be well
maintained.

Figure 7 plots the calculated RGS of the averaged grating
versus the occupation ratio. The Λ1 and Λ2 are, respectively,
235 and 245 nm, to ensure enough tuning range, and the pixel
size is typically 10 nm [16]. The sample unit length is 6 μm to
ensure tuning precision. It can be seen that the RGS is as high
as 1 when x � 0 or x � 1 and sharply reduces to about 0.6
with x approaching 0.5.

D. Laser Static Characteristics
DFB lasers play an important role in the field of optical
communication because of their excellent mode selectivity,
compact structure, and so on. To investigate the lasing char-
acteristics of DFB lasers with the PSD grating, a spectral do-
main model is utilized [23]. We simulated the lasing spectrum,
the longitudinal light power distribution, and the longitudinal
gain distribution of the DFB lasers based on the π-phase-shift
Bragg gratings with PSDs and without PSDs (traditional struc-
ture). The laser parameters modeled in the simulation are
listed in Table 3. It can be seen in Fig. 8 that the lasing spec-
trum of the proposed structure is nearly the same as that of

Fig. 7. RGS versus occupation ratio of the grating-stitchedmethod. A
schematic of a sample unit of the stitched grating is shown in the inset.

Table 3. Modeling Laser Parameters

Parameter (Symbol) Value

Cavity length (L) 400 μm
Grating period without PSDs (Λ) 241 nm
Grating period with PSDs (Λ0) 238 nm
Defect size (D) 59.5 nm
Period of defects (P) 4.78 μm
Active layer width (w) 1.5 μm
Active layer thickness (d) 0.12 μm
Optical confinement factor (Γ) 0.3
Effective refractive index 3.2
at bias current (neff )
Group refractive index (ng) 3.7
Refractive index modulation (Δn0) 0.003
Filling factor (r) 0.5
Internal loss (α) 4 × 103 m−1

Spontaneous emission rate (τ−1) 2.5 × 1010 s−1

Bimolecular recombination 1 × 10−16 m3 s−1

coefficient (B)
Auger recombination coefficient (C) 3 × 10−41 m6 s−1

Transparent carrier density (N0) 1.2 × 1024 m−3

Linear gain coefficient (a) 2.7 × 10−20 m2

Linewidth enhancement factor (βC) 1.5
Bias current (IB) 20 mA
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the traditional one. Because of the reduced κL in the proposed
structure, the longitudinal intensity is slightly less and the
longitudinal gain is a little higher than that of the traditional
case. Roughly speaking, DFB lasers with the proposed struc-
ture have almost the same lasing characteristics as traditional
DFB lasers. Therefore, the proposed structure with PSDs is a
valid method for multiwavelength DFB laser arrays, particu-
larly as applied to a DWDM system.

4. CONCLUSION
In this paper, we found that the Bragg wavelength can be
shifted when a series of PSDs is introduced along the Bragg
grating. The influences of defect size and defect period on the
shift of the Bragg wavelength were investigated in detail. The
proposed structure can be applied in grating-based multiwa-
velength devices. As a promising application, a DFB laser with
our proposed structure was studied and showed a good con-
sistency with the conventional laser structure. Therefore, a
grating with PSDs provides an alternative way to fabricate
grating-based photonic devices, such as multiwavelength filter
arrays and laser arrays. In addition, the proposed structure
can also be applied to other periodic dielectric structures
to optimize the characteristic wavelength by designing PSDs.
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